Principles of Epidemiology

Samuel N. Forjuoh, MB, ChB, DrPH
Associate Professor
Department of Family & Community Medicine
Texas A&M University System Health Science Center
College of Medicine, Scott & White Hospital
Temple, Texas
Outline of Presentation

- Epidemiology: definition, objectives & elements
- Epidemiological measurements
- Screening procedures
- Epidemiological design strategies
Definition of Epidemiology

Classic: Study of the distribution & determinants of *DISEASE* frequency in human populations

Last’s: Study of the distribution & determinants of *health-related* states, OUTCOMES, or events in specified populations, and the application of this study to control the health problems
Objectives of Epidemiology

- Study etiology & risk factors
- Determine the extent of outcome
- Study natural history & prognosis
- Evaluate new preventive/therapeutic measures/new modes of H/C delivery
- Provide foundations for developing public policy & regulatory decisions
Elements of Epidemiology

- Distribution of problem
- Frequency of problem
- Determinants of problem
- Control measures for problem
Distribution of Problem

- **Who** is affected by problem?
- **Where** does problem occur?
- **What** is the nature of the problem?
- **Why** does problem occur?
- **When** does problem occur?
- **How** can we prevent the problem?
Frequency of Problem

- **Measures of Morbidity**
 - Risk \Rightarrow Pr (having the problem)
 - Prevalence \Rightarrow # of existing cases
 - Incidence \Rightarrow # of new cases

- **Measures of Mortality**
 - Mortality
 - Survival
 - Case Fatality
Determinants of Problem

- Risk factors of problem
- Contributory factors of problem
- Course of problem
- Prognosis of problem
Control of the Problem

- **Prevention**
 - Primary prevention => pre-event phase
 - Secondary prevention => event phase
 - Tertiary prevention => post-event phase

- **Promotion (1⁰ prevention)**

- **Acute care (2⁰ prevention)**

- **Rehabilitation (3⁰ prevention)**
Dynamics of Transmission

- **The epidemiologic triad**
 - Host
 - Agent/Vector
 - Environment

- **Modes of transmission**
 - Direct vs. indirect transmission
 - Horizontal vs. vertical transmission

- **Endemic, Epidemic & Pandemic**
Risk & Protective Factors

<table>
<thead>
<tr>
<th>HOST</th>
<th>AGENT</th>
<th>ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, sex, race</td>
<td>Biologic (bacteria)</td>
<td>Temperature</td>
</tr>
<tr>
<td>Religion</td>
<td>Chemical (poison)</td>
<td>Overcrowding</td>
</tr>
<tr>
<td>Occupation</td>
<td>Physical (trauma)</td>
<td>Neighborhood</td>
</tr>
<tr>
<td>Education</td>
<td>Nutritional (lack)</td>
<td>Housing</td>
</tr>
<tr>
<td>Marital status</td>
<td>Energy (thermal)</td>
<td>Radiation</td>
</tr>
</tbody>
</table>
Modes of Transmission

- **Direct transmission**
 - person-to-person via contact, e.g., cold, TB

- **Indirect transmission**
 - via vector e.g., water-borne diseases

- **Horizontal transmission** => infectious disease
 - from one person to another

- **Vertical transmission** => genetic disease
 - from one generation to another
Application to Disease

MALARIA

Host
Traveler

Vector
Mosquito Bite

Agent
Pl. Parasite

Environ
Lack of MosquitoNet
Application to Injury/Trauma

BURN

Host
Young Child

Vector
Hot Water

Agent
Thermal Energy

Environ
Lack of Supervision
Application to Social Problem

TEEN PREGNANCY

Host
Teenager

Vector
Intimate Sexual Contact

Agent
Sperm

Environ
Lack of Protection
Endemic, Epidemic & Pandemic

- **Endemic condition**
 - Usual occurrence of a condition within a geographic area

- **Epidemic condition**
 - Occurrence of a condition clearly in excess of normal expectancy

- **Pandemic condition**
 - An epidemic occurring over a very wide area usually affecting a large population
Investigation of an Epidemic

- Define the epidemic
- Examine distribution of cases
- Look for interactions of relevant variables
- Develop hypothesis based on:
 - existing knowledge, if any, of the condition
 - analogy to conditions of known etiology
- Test hypotheses
- Recommend control & preventive measures
Epidemiological Measurements
Risk

\[R = \frac{\text{# New Cases}}{\text{Persons At Risk}} \]

- Measure of the occurrence of \textit{new} cases in a pop^n as a \textit{f}^n of persons at risk at a specified time
- a.k.a. Cumulative incidence
- Proportion; \textit{no units}
- \(1 > R > 0 \) or can be expressed as a %
- Reduced by \(1^0 \) prevention
Prevalence

\[P = \frac{\# \text{Existing Cases}}{\text{Total Population}} \]

- Measure of existing cases in a population as a fraction of total population at a specified time
- a.k.a. Point prevalence
- Proportion; no units
- \(1 > P > 0 \) or can be expressed as a %
- Reduced by 2\(^0\) prevention
Types of Prevalence

- **Point Prevalence**
 - A snapshot of time
 - Are you here because of abuse?

- **Period Prevalence**
 - Over a specified period of time
 - Have you been abused in the past 6 months?

- **Life-time Prevalence**
 - Over a lifetime
 - Have you ever been abused?
Incidence

\[IR = \frac{\text{# New Cases}}{\text{Person-Time Obs}} \]

- Measure of new cases in a population as a function of person-time of observation
- a.k.a. Incidence density
- Rate; units of person-time
- \(4 > IR > 0 \)
- Reduced by 10\(^0\) prevention
Consider a town with a popn of 5,000. If 500 of 4,000 persons without disease A develop it over a 10-year period:

- What is the risk of acquiring A? \(R = \frac{500}{4,000} \)

- What is the prevalence of A? \(P = \frac{1,500}{5,000} \)

- What is the incidence of A? \(IR = \frac{500}{40,000} \)
Indices of Mortality

- Crude mortality rate
- Proportionate mortality rate
 - attributable to a specified condition
- Specific mortality rate
 - attributable to a specified segment of population
- Standardized mortality ratio
- Case fatality ratio (rate)
- Survival rate
Standardization of Rates

Why standardize?
• To account for the possible effects of differences in age distribution or other confounding variables

Direct standardization
• Uses a suitable standard pop^n (combined)

Indirect standardization
• Uses a set of standard age-specific rate
Screening & Diagnostic Tests
Screening

- Application of a test or procedure to asymptomatic persons for the purpose of classifying them w.r.t. their likelihood of having a particular condition.
- Aims at early detection before the development of symptoms.
- Ex: Partner Violence Screen - 3 Qns
Attributes of a Screening Test

- **Validity**
 - Ability of the test to do what it is supposed to do
 - Accuracy of the test

- **Reliability**
 - Consistency of results when repeat tests are performed on the same persons under the same condition
 - Precision or repeatability of the test
Measures of Validity

- **Sensitivity**
 - Pr. of testing +ve if condition truly exists

- **Specificity**
 - Pr. of testing -ve if condition is truly absent

- **Predictive value positive**
 - Pr. of having disease given a +ve test

- **Predictive value negative**
 - Pr. of not having disease given a -ve test
The 2x2 Contingency Table

- Epidemiologist’s way of summarizing data for analysis/ test of association
- Two variables represented by columns and rows

<table>
<thead>
<tr>
<th>Variable 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>a</td>
</tr>
<tr>
<td>-</td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Sensitivity

Sensitivity = \(\Pr (T^+/D^+) \) = \(\frac{\text{True +ve}}{\text{All w/ Cond}} \) = \(\frac{TP}{TP+FN} \)

<table>
<thead>
<tr>
<th>TEST RESULTS</th>
<th>WITH CONDITION</th>
<th>WITHOUT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITIVE</td>
<td>Have Condition Have +ve Test Result = TRUE +VES (TP) a</td>
<td>No Condition Have +ve Test Result = FALSE +VES (FP) b</td>
</tr>
<tr>
<td></td>
<td>Have Condition Have -ve Test Result = FALSE -VES (FN) c</td>
<td>No Condition Have -ve Test Result = TRUE -VES (TN) d</td>
</tr>
</tbody>
</table>
Specificity

Specificity = \(Pr \left(\frac{T^-}{D^-} \right) \) = \(\frac{\text{True -ves}}{\text{All w/o Cond}} \) = \(\frac{\text{TN}}{\text{TN+FP}} \)

<table>
<thead>
<tr>
<th>TEST RESULTS</th>
<th>WITH CONDITION</th>
<th>WITHOUT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITIVE</td>
<td>Have Condition Have +ve Test Result = TRUE +VES (TP)</td>
<td>No Condition Have +ve Test Result = FALSE +VES (FP)</td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>Have Condition Have -ve Test Result = FALSE -VES (FN)</td>
<td>No Condition Have -ve Test Result = TRUE -VES (TN)</td>
</tr>
</tbody>
</table>
Predictive Value Positive

PV+ = Pr (D+/T+)

WITH CONDITION

<table>
<thead>
<tr>
<th></th>
<th>Have Condition Have +ve Test Result</th>
<th></th>
<th>No Condition Have -ve Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAVE CONDITION</td>
<td>TRUE +VES (TP)</td>
<td>FALSE +VES (FP)</td>
<td></td>
</tr>
<tr>
<td>HAVE -VE TEST RESULT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FALSE -VES (FN)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WITHOUT CONDITION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HAVE -VE TEST RESULT</td>
<td>TRUE -VES (TN)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All Testing +ve = **TP / TP+FP**
Predictive Value Negative

<table>
<thead>
<tr>
<th>TEST RESULTS</th>
<th>WITH CONDITION</th>
<th>WITHOUT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITIVE</td>
<td>Have Condition Have +ve Test Result = TRUE +VES (TP) a</td>
<td>No Condition Have -ve Test Result = FALSE +VES (FP) b</td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>Have Condition Have -ve Test Result = FALSE -VES (FN) c</td>
<td>No Condition Have -ve Test Result = TRUE -VES (TN) d</td>
</tr>
</tbody>
</table>

\[
PV^- = \frac{Pr(D^-|T^-)}{Pr(D^-|T^-) + Pr(D^-|T^+)} = \frac{TP}{TP + FN} = \frac{TN}{TN + FN}
\]
Computation Example - II

<table>
<thead>
<tr>
<th></th>
<th>C⁺</th>
<th>C⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ve</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>-ve</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

| | 55 | 45 | 100 |

- **Sens** = \(\frac{40}{55} \times 100\% = 73\%
- **Spec** = \(\frac{25}{45} \times 100\% = 56\%
- **PV⁺** = \(\frac{40}{60} \times 100\% = 67\%
- **PV⁻** = \(\frac{25}{40} \times 100\% = 63\%

Measures of Reliability

- **Percent Agreement**
 - Observed proportion of agreement between 2 observers

- **Percent Agreement by Chance**
 - Proportion of agreement between 2 observers arising by chance

- **Cohen’s Kappa Statistic**
 - Extent to which agreement between 2 observers is above and beyond the amount of agreement expected by chance alone
Percent Agreement

Physician 1

<table>
<thead>
<tr>
<th></th>
<th>Abnormal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>

Physician 2

<table>
<thead>
<tr>
<th></th>
<th>Abnormal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>11</td>
</tr>
</tbody>
</table>

Grand Total

- 32 (71%)
- 13 (29%)
- 45 (100%)

Total # Agreed

- 16 + 11 = 27

Total # Agreed = 27

Grand Total = 45

% Agreement = \(\frac{\text{Total # Agreed}}{\text{Grand Total}} \times 100\% \)

% Agreement = \(\frac{16+11}{45} \times 100\% = 60\% \)
% Agreement by Chance

<table>
<thead>
<tr>
<th></th>
<th>Abnormal</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician 1</td>
<td>12.8</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Physician 2</td>
<td>18 (40%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 (60%)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Exp = RT x CT / GT

\[
\text{% Agr by Ch} = \frac{\text{Tot. Exp. # Agr}}{\text{Grand Total}} = \frac{12.8 + 7.8}{45} \times 100\% = 45.8\%
\]
Cohen’s Kappa Statistic

Kappa = \frac{\% \text{ Agreement} - \% \text{ Agreement By Chance}}{100\% - \% \text{ Agreement By Chance}}

= \frac{60\% - 45.8\%}{100\% - 45.8\%} = \frac{14.2\%}{54.2\%} = .26
Epidemiological Design Strategies
Epidemiological Design Strategies

Epidemiological Studies

Descriptive Studies

- Populations
 - Ecological

- Individuals
 - Case Reports
 - Case Series

Analytic Studies

- Observational
 - Cross Sectional

- Experimental
 - Case Control
 - Cohort
 - RCT
Descriptive Studies...

- Studies normally concerned with the distribution of diseases or health-related outcomes including consideration of the subgroups affected, and how the frequency of occurrence of the condition varies over time.
- No hypothesis testing.
A Case Report

- Consists of a careful, detailed report on the profile of a single patient
- Most basic type of descriptive study design of individuals
- Ex: Patient, i.v. drug abuser; weight loss, etc.
A Case Series

- Consists of a compilation of case reports describing the characteristics of a number of individual patients with a particular health-related outcome.

- Ex: Several patients seen at San Francisco with similar (AIDS) signs.
An Ecological Study

- Study of whole populations or groups of persons rather than individual persons
- Unit of analysis = populations
- Ex: County death rates by per capita cigarette consumption
Analytical Studies...

- Studies designed to examine associations which may have putative or hypothesized cause-effect relationships
- Involve hypothesis-testing
A Cross-Sectional Study

- Status of individuals are observed and assessed w.r.t. presence or absence of both exposures and outcomes at the same time
- a.k.a. Prevalence study
- Considered descriptive & analytical
- Most common study design used
A Case-Control Study

- Study subjects are selected based on whether or not they have an outcome of interest and then compared w.r.t. to their current or past exposure histories

- a.k.a. Retrospective study

- Provides strength of association
A Cohort Study

- Study subjects are selected based on whether or not they have an exposure of interest and are then followed over time to assess the occurrence of outcome(s)
- a.k.a. Prospective/Follow-up study
- Provides measures of relative risk of incidence
A Randomized Controlled Trial

- A type of prospective cohort study in which the researcher assigns the exposure of interest randomly between the study subjects
- a.k.a. Intervention study
- Most advanced study design
Criteria for Causal Inference

- Strength of the association
- **Dose-response effect**
- Lack of temporal ambiguity
- **Consistency of findings**
- Biological plausibility of hypothesis
- **Coherence of the evidence**
- Specificity of the association
Descriptive vs. Analytic Designs

<table>
<thead>
<tr>
<th>Descriptive Studies</th>
<th>Analytic Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No hypothesis testing</td>
<td>• Can hypothesize on cause-effect relationships</td>
</tr>
<tr>
<td>• No elucidation on the criteria for causation</td>
<td>• Elucidation on the criteria for causation</td>
</tr>
<tr>
<td>• Lack power to generalize results</td>
<td>• Results may be normally generalizable</td>
</tr>
</tbody>
</table>

- e.g. Case Reports
- e.g. Case-Control Study
Hierarchy of Epi Design Strategies

- Case Reports
- Case Series
- Cross-Sectional Surveys
- Case-Control Studies
- Cohort (Follow-Up) Studies
- Randomized Controlled Trials

Complexity

Confidence